Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells.
نویسندگان
چکیده
The rapid developments in nanotechnology have brought with them a deep concern over the safety of nanomaterials. Investigating the molecular mechanisms underlying their toxicity in different cell lines will help us better understand and apply nanomaterials appropriately. Poly(ethylene glycol)-phosphoethanolamine (PEG-PE) is an FDA-approved nonionic diblock copolymer and is widely used in drug delivery systems. Here, we find that PEG-PE accumulates in the endoplasmic reticulum (ER) and induces ER stress and that cancer cells and normal cells have different cell fates as a result of this stress. In A549 cancer cells, PEG-PE damages ER functions and triggers apoptosis by activating proapoptotic UPR signaling and high expression of cell death effector CHOP and proapoptotic Bax/Bak. In addition, PEG-PE-induced ER stress also up-regulates lipid synthesis and triggers lipid droplet formation in cancer cells. By contrast, in MRC-5 and 293T cells, high expression of the UPR feedback protein GADD34 which inhibits proapoptotic UPR signaling, and antiapoptotic Bcl-2 and Bcl-xl which down-regulate Bax/Bak, protect these normal cells from PEG-PE-induced apoptosis. When gadd34, bcl-2, or bcl-xl is knocked down, apoptosis occurs in PEG-PE-treated normal cells. In summary, we demonstrate the safety of PEG-PE in normal cells and elaborate the molecular mechanism underlying its nanotoxicity in cancer cells. This study implies PEG-PE-based drug delivery system has the potential to alter the sensitivity of cancer cells to some chemotherapeutic agents by selectively activating unfolded protein response (UPR) in cancer cells, and it also provides a useful foundation for research on ER stress-induced nanotoxicity and other lipid-based nanomaterials.
منابع مشابه
Sesterin as a biomolecule
Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملThe Probiotic Bacteria Induce Apoptosis in Breast and Colon Cancer Cells: An Immunostimulatory Effect
Background: Uncontrolled cell proliferation and resistance to apoptosis are the main characteristics of cancer cells. Therefore, a substance with the capability to induce apoptosis in cancer cells could be known as an anti-cancer material. Probiotics are useful microorganisms that are crucial for the host’s health.Materials and Methods: In the present stu...
متن کاملDNA damage and endoplasmic reticulum stress mediated curcumin-induced cell cycle arrest and apoptosis in human lung carcinoma A-549 cells through the activation caspases cascade- and mitochondrial-dependent pathway.
Curcumin, a major component of the Curcuma species, is known to have antioxidant, anti-inflammatory properties and induce apoptosis of cancer cells, however, the precise molecular mechanisms of apoptosis in vitro are unclear. In this study, we showed that curcumin, a plant product containing the phenolic phytochemical, caused DNA damage and endoplasmic reticulum (ER) stress and mitochondrial-de...
متن کاملEstrogen protects SGC7901 cells from endoplasmic reticulum stress-induced apoptosis by the Akt pathway
Several previous studies have demonstrated that estrogen may protect cancer cells from endoplasmic reticulum stress-induced apoptosis. However, the molecular mechanisms involved are not fully understood. In the present study, human gastric adenocarcinoma SGC7901 cells were treated with tunicamycin (TM) to induce endoplasmic reticulum stress. This was demonstrated by increased glucose-regulated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012